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ABSTRACT

The selection of a model among alternative models that include inequality constraints is a complex task. The
generalized order restricted criterion (GORIC) is a suitable approach to do so. However, the GORIC proves
challenging to compute in the general case. This report discusses all known methods to compute the GORIC and
illustrates their use with a set of didactic examples.

1. Introduction

1.1 Inequality constrained regression
Inequality constrained regression models are regression models for which one or more parameters are subject to
inequality constraints. Such inequality constraints often expresses basic ground truths about the system under study.
For example, a regression model may be constrained to predict positive values only. This is sensible for variables like
chemical concentrations or probability densities. Inequality constraints are also useful to express the shape of a
functional relationship between input and output variables. For example, Meyer and Habtzghi [2011] discuss models
to estimate hazard rate functions subject to shape constraints. A wide variety of statistical methods have been
developed to estimate regression models subject to shape constraints [Delecroix et al., 1996, Mammen and
Thomas-Agnan, 1999, Beliakov, 2000, Delecroix and Thomas-Agnan, 2000, Turlach, 2005, Meyer, 2008, Hazelton
and Turlach, 2011, Meyer et al., 2011, Meyer and Habtzghi, 2011, Habtzghi and Datta, 2012, Papp and Alizadeh,
2014]. A fairly comprehensive treatment is given in Silvapulle and Sen [2011]. These statistical methods generally
assume that the applicable constraints are specified completely for a given model. This means (a) that the shape of
the fitted function is defined by means of signs of the first and/or second derivative and (b) that these signs are known
everywhere in the function’s domain.

1.2 Model selection in the presence of inequality constraints
In some areas of research, there may exist mulitple candidate models for a given system, each with their own set of
inequality constraints. These candidate models are also described as informative hypotheses Hoijtink et al. [2008].
The selection of a hypothesis supported by the available evidence constitutes a model selection problem, for which
multiple methods have been proposed [Mulder et al., 2010, Gu et al., 2018]. The generalized order restricted
information criterion (GORIC), as proposed and studied in Kuiper et al. [2011, 2012], Kuiper and Hoijtink [2013] is
especially appealing due to its similarity with the Akaike information criterion [AIC, Akaike], which is a applicable
for model selection in absence of inequality constraints [e.g. Hipel et al., 1977, Aho et al., 2014].

The GORIC could be also useful for process diagnosis and automation on the basis of shape-constrained spline
function fitting. Indeed, promising results based on shape constrained function fitting methods have been shown
already in Villez et al. [2013] and Thürlimann et al. [2019]. However, these methods require the use of decision
criteria that are tuned in a subjective manner. Potentially, the GORIC, or another criterion derived form it, could
allow for a more objective trend-based decision-making in process monitoring and control.

1.3 Computational challenges
The GORIC, while appealing at a conceptual level, poses a computational challenge. In all but the most simple of
cases, computing the GORIC requires a computationally intensive Monte Carlo procedure. To evaluate the need for
further research in this direction, all known methods to compute the GORIC are listed in this report. In addition,
several of these methods have been implemented and evaluated in terms of their computational efficiency.

In this report, the GORIC is first illustrated as a selection criterion for data series segmentation, particularly into
segments that are defined by the shape of the function (e.g., increasing and decreasing segments, convex and concave
segments). After illustration, special attention is given to the computation of the expected degrees of freedom, which
is the term in the GORIC that is particulary challenging to compute.
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2. Illustration of the generalized order restricted criterion (GORIC)

2.1 Data set for demonstration
We apply the GORIC for segmentation of a data series. To this end, a range of shape-constrained spline models, each
corresponding to a different candidate segmentation, are fit to the data and the GORIC is used as the selection to find
the best model. We use the Titanium data set from de Boor [1978] to demonstrate the methods. As in Villez et al.
[2013], this data series is chosen here because of its distinct shape profile. The data series is described well as
consisting of an increasing and decreasing segment. Each of these two segments can be decomposed further into a
convex and concave segment.
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Figure 1. Data set used for demonstration purposes. Measurements (y) as a function of the independent variable
(temperature, x).

This univariate data series is shown in Fig. 1 and consists of N = 49 pairs (xi, ỹi) with xi the known value of an
independent variable and ỹi the measurement of the corresponding dependent variable (i = 1, . . . ,N). These data are
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organized into two N-dimensional vectors x and ỹ with:

xi = x(i) (1)
ỹi = ỹ(i) (2)

2.2 Constraining the first derivative
We first fit piece-wise linear functions to the data while constraining the shape of the function to consist have a
distinct shape. This shape is always defined by two consecutive segments, which are - in this order - (1) increasing
(isotonic) and (2) decreasing (antitonic). Practically, this is achieved by solving the following quadratic program
(QP), which minimizes the sum of squared residuals (SSR) while ensuring that the imposed shape constraints are
satisfied:

β̂ := arg min
β

S S R =

N∑
i

(yi − ỹi)2 = (y − ỹ)T ·W · (y − ỹ) (3)

B0 · β = y (4)
S1 · B1 · β ≥ 0 (5)

with W := IN×N and B0 := IN×N . The N − 1 × N-dimensional matrix B1 is used to compute the first-order differences
along y:

B1 :=



−1 +1 0 0 . . . 0
0 −1 +1 0 . . . 0
0 0 −1 +1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . +1


(6)

The diagonal N − 1 × N − 1-dimensional matrix S1 is used to specify the signs of the first-order difference along y:

S1 := diag (s1) (7)

with s1 the N − 1-dimensional vector of signs (+1 or -1) for the first-order difference. These signs are chosen such
that the fitted function satisfies the isotonic-antitonic shape described above. There are N − 2 = 47 vectors that satisfy
this requirement for s1. Fig. 2 shows exemplary solutions of the above QP for three candidates for s1. The top panel
in Fig. 3 shows the objective function of the QP as a function of the location of the change in sign, which is the
location of the sign change in s1. Note that placing the change in sign at T = 595 means that the fitted function is
isotonic over the whole domain. Similarly, placing the sign change at sign at T = 1075 means that the fitted function
is antitonic over the whole domain. By including these two monotone functions (isotonic and antitonic) also, one
obtains a total of M = 49 models.

We now aim to select a parsimonious model among the M models. To this end, the generalized order restricted
information criterion (GORIC) is used. The GORIC is a model selection criterion similar to the AIC but is especially
adapted for inequality constrained regression models, like the shape constrained spline functions fitted above [Kuiper
et al., 2012]. It is written as:

GORIC := −2 LL + 2 D̄ (8)

= −2 log

( 1
2πσ̂2

)N/2

exp
(
−

S S R
2σ̂2

) + 2 D̄ (9)

where the first term is equal to twice the negative log-likelihood, thus reflecting the fit of the model, and where the
second term is a penalty term equal to twice the expected degrees of freedom D̄.
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Figure 2. Exemplary fits of three shape constrained piece-wise linear functions. Cyan sectors indicate the
selected location of the change of sign in the first derivative.

The estimate of the measurement error standard deviation (σ̂) is set equal to its maximum likelihood estimate, which
in this case is equal to the root mean squared residual (RMSR):

σ̂ := RMS R =

√
S S R

N
(10)

so that the GORIC simplifies to:

GORIC := N
(
1 + log (2π) + log

(
σ̂2

))
+ 2D̄ (11)

As in Kuiper et al. [2012], the expected degrees of freedom is given by the number of parameters (β, σ) minus the
expected number of active constraints, C̄, among the inequality constraints in the QP:

D̄ := N + 1 − C̄ (12)
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Figure 3. Model selection. Top: sum of squared residuals (SSR); Middle: degrees of freedom (DOF); Bot-
tom: generalized order restricted information criterion (GORIC). All measures are shown as a function of the
location of the sign change in the first-order differences.

In this case, C̄ is estimated by means of Monte Carlo integration using K = 10000 random samples. This is explained
in further detail below.

The estimates D̄ are shown in the middle panel of Fig. 3 as a function of the location of the sign changes in s1. One
can see that spline functions with sign changes at the extremes (close to the beginning or end of the data series) lead
to a smaller degrees of freedom, indicating that these models are less flexible. The values for D̄ lie between 5 and 9,
which is substantially lower than the number of parameters (50).
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Figure 4. Selected model. Top: data (dots) and fitted function (line); Bottom: first-order differences of the data
(dots) and slopes of fitted piece-wise linear function (line). Cyan sectors indicate the selected location of the
change of sign in the first derivative.
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2.3 Constraining the second derivative
For a second demonstration of the GORIC, we fit piece-wise linear functions to the data while constraining the
curvature of the function. The imposed shape is always defined by three consecutive segments, which are - in this
order - (1) convex, (2) concave, and (3) convex. Practically, this is achieved by solving the following QP:

β̂ := arg min
β

N∑
i

(yi − ỹi)2 = (y − ỹ)T ·W · (y − ỹ) (13)

B0 · β = y (14)
S2 · B2 · β ≥ 0 (15)

with W := IN×N and B0 := IN×N . The N − 2 × N-dimensional matrix B2 is used to compute the second-order
differences along y:

B1 :=



+1 −2 +1 0 0 . . . 0
0 +1 −2 +1 0 . . . 0
0 0 +1 −2 +1 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . +1


(16)

The diagonal N − 2 × N − 2-dimensional matrix S2 is used to specify the signs of the second-order difference along y:

S2 := diag (s2) (17)

with s2 the N − 2-dimensional vector of signs (+1 or -1) for the second-order difference. These signs are chosen such
that the fitted function satisfies the convex-concave-convex shape described above. There are
M = (N − 4)(N − 5) = 1980 vectors that satisfy this requirement for s2. Fig. 5 shows 3 examples of such a vector and
the associated solution of the above QP. Fig. 6 shows the objective function (SSR) as a function of the location of the
sign changes in s2. Note that the cells at left border and top border correspond to simpler shapes, namely
concave-convex (left border) and convex-concave (top). The very top-left cell corresponds to a concave shape over
the whole domain.

We now aim to select a parsimonious model among the M = (N − 4)(N − 5) fitted functions. To this end, the GORIC
is used again. Once more, this requires Monte Carlo integration to compute the degrees of freedom D̄. In this case,
K = 10000 samples are used. The resulting values for D̄ are shown in Fig. 7. The values range between 4 and 8,
again showing that application of shape constraints is an effective way to control the complexity of a spline-based
model. Note that the DOF for functions with a simpler shape (left-border and top-border, as above) are considerably
lower. This means that the computed DOF matches the intuition that increasing the number of segments in the
imposed shape increases the complexity of the fitted model. Conversely, this means the DOF provides a quantifiable
(and possibly objective) measure of this intuited complexity.

The DOF and SSR values are combined to compute the GORIC (as above). The GORIC values are shown in Fig. 8.
The selected model, i.e. the model with minimum GORIC value, is illustrated in Fig. 9.
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Figure 5. Exemplary fits of three shape constrained piece-wise linear functions. Colored bars indicate the
selected location of the change of sign in the second derivative.
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Figure 6. Heatmap of the sum of squared residuals (SSR) as a function of the locations of sign changes in the
second derivative.
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Figure 7. Heatmap of the degrees of freedom (DOF) as a function of the locations of sign changes in the second
derivative.
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Figure 9. Selected model. Top: data (dots) and fitted function (line); Bottom: first-order differences of the data
(dots) and slopes of fitted piece-wise linear function (line). Colored bars indicate the selected locations of the
change of sign in the second derivative.
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2.4 Constraining the first and second derivative
For a third demonstration of the GORIC, we fit piece-wise linear functions to the data while constraining both the
slope and curvature of the function. The imposed shape is always defined by three consecutive segments, which are -
in this order - (1) convex-increasing, (2) concave, and (3) convex-decreasing. Practically, this is achieved by solving
the following QP:

β̂ := arg min
β

N∑
i

(yi − ỹi)2 = (y − ỹ)T ·W · (y − ỹ) (18)

B0 · β = y (19)
S1 · B1 · β ≥ 0 (20)
S2 · B2 · β ≥ 0 (21)

with W, B0, B1, and B2 as defined above.

The diagonal matrix S1 (S2) is used to specify the signs of the first-order (second-order) differences along y:

S1 := diag (s1) (22)
S2 := diag (s2) (23)

with s1 (s2) the vector of signs (+1 or -1) for the first-order (second-order) difference. The signs in s1 (s2) are chosen
such that the fitted function satisfies the shape described above. The elements of s1 corresponding to the concave
segment are set to zero, so that the corresponding inequality constraints are satisfied regardless of the values of β.
Note that the constraints for the first derivative can be simplified further by only including the constraints for the
left-most and right-most data point (lowest and highest value for x). All other constraints on the first derivative will
be inactive as long as all other constraints are satisfied. As a result, the number of non-redundant constraints equals
N − 1 + 2 = 50, one more than the number of dimensions (N).

There are M = (N − 4)(N − 5) = 1980 pairs of vectors that satisfy the above requirement. Fig. 10 illustrates this with
3 exemplary solutions of the above QP. Fig. 11 shows the objective function (SSR) as a function of the location of the
shape changes. As before, the cells at left border and top border correspond to simpler shapes, consisting of two
segments only. The very top-left cell corresponds to a concave shape over the whole domain, while constraining the
function’s slope to be positive (negative) for lowest (highest) value of x.

We now aim to select a parsimonious model among the M = (N − 4)(N − 5) fitted functions. As before, the GORIC is
used for this purpose. In this case, K = 10000 samples are used to compute the degrees of freedom D̄. The resulting
values for D̄ are shown in Fig. 12. The values range between 3.3 and 5.2, again showing that application of shape
constraints is an effective way to control the complexity of a spline-based model. Not surprisingly, the range of the
DOF for these functions, for which both the 1st and 2nd derivative are constrained, is lower than the range obtained
for functions with constraints for the 1st or the 2nd derivative only (see Fig. 3 and Fig. 7). More surprising is that the
DOF for segmentations with a short concave segment (diagonal line) or a long concave segment (top-left corner) is
higher than the DOF obtained for models with in-between lengths for the concave segment, which are shown in the
center of coloured section of the heatmap in Fig. 12. The DOF and SSR values are combined to compute the GORIC
(as above). The GORIC values are shown in Fig. 8. The selected model, i.e. the model with minimum GORIC value,
is illustrated in Fig. 9.
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Figure 10. Exemplary fits of three shape constrained piece-wise linear functions. Colored bars indicate the
selected location of the change of shape.
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Figure 11. Heatmap of the sum of squared residuals (SSR) as a function of the locations of shape changes.
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Figure 13. Heatmap of the generalized order restricted information criterion (GORIC) as a function of the
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Figure 14. Selected model. Top: data (dots) and fitted function (line); Bottom: first-order differences of the
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the change of sign in the second derivative.
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2.5 Constraining the function value
A last demonstration is provided by constraining the function value. We consider a segmentation of the data into
three segments by fitting a piece-wise linear function whose sign of the fitted function value at the values in x is
constrained to be below, above, and below 1. This leads to an the simplest QP program so far:

β̂ := arg min
β

N∑
i

(yi − ỹi)2 = (y − ỹ)T ·W · (y − ỹ) (24)

B0 · β = y (25)
S0 · B0 · β ≥ 1 (26)

The diagonal N × N-dimensional matrix S0 is used to specify the signs of the second-order difference along y:

S0 := diag (s0) (27)

with s0 the N-dimensional vector of signs (+1 or -1) for the second-order difference. These signs are chosen such that
the fitted function satisfies the below-above-below shape described above.

There are M = (N − 2)(N − 3) = 2162 vectors that satisfy this requirement for s0. Fig. 15 shows 3 examples of such a
vector and the associated solution of the above QP. Fig. 16 shows the objective function (SSR) as a function of the
location of the sign changes in s0. Note that the cells at left border and top border correspond to simpler shapes,
namely above-below (left border) and below-above (top). The very top-left cell corresponds to an above shape over
the whole domain.

In this case, an analytic solution is available to computed the expected DOF, D̄. Because the matrix W, B0, and
S0 · B0 are all diagonal, it follows that D̄ = 1 + N/2 = 25.5. This is true regardless of the chosen s0, so that the model
complexity is the same for every possible segmentation. Consequentially, the best possible segmentation corresponds
to the function with the lowest SSR. This model is illustrated in Fig. 17.
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Figure 15. Exemplary fits of three shape constrained piece-wise linear functions. Colored bars indicate the
selected segmentation.
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Figure 16. Heatmap of the sum of squared residuals (SSR) as a function of the locations of sign changes in the
second derivative.
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Figure 17. Selected model. Data (dots) and fitted function (line).
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3. Computation of the Expected Degrees of Freedom

The computation of the expected degrees of freedom is not trivial in the general case. The next sections describe the
methods known to the author.

3.1 Quadratic Programs
It is assumed that the model fitting problem can be described as a convex QP. It is further assumed that the problem is
feasible (non-empty solution set). This means the parameter estimation problem can be written as the minimization
of a quadratic objective function and a set of linear equality and inequality constraints (QP0):

β̂ := arg min
β

J =
(
β − β̃

)T
·W ·

(
β − β̃

)
(28)

Aeq · β = beq (29)
Aineq · β ≤ bineq (30)

where β̃ represents the optimal solution for β in absence of any equality or inequality constraints.

For the purpose of this report, the studied QPs are restricted to the set of QPs that can be transformed equivalently to
the following form (QP1):

δ̂ := arg min
δ

J =
(
δ − δ̃

)T
·
(
δ − δ̃

)
(31)

A · δ ≤ 0 (32)

where the vector δ̃ represents the optimal solution for δ in absence of any (inequality) constraint. In QP1, A is always
a matrix with the number of rows (K) equal to or larger than the number of columns (N). We further assume that
rows in A representing constraints that are always inactive or can only be weakly active have been removed.
Geometrically speaking, this means that A represents a pointed polyhedral cone with its point at the origin.

The following transformation steps are useful to transform a general-form QP (QP0) into the desired form (QP1):

1. Centering. The coordinate system is shifted so that right-hand sides of the constraints become equal to null
vectors.

2. Whitening 1. The coordinate system is rotated and scaled so that the curvature of the objective function is
constant (in every direction and in every point), thus making W equal to the identity matrix.

3. Dimension reduction. The number of parameters are reduced by:

(a) Accounting for equality constraints by projecting into the null space of the equality constraints. The
number of removed parameters equals the row rank of Aeq.

(b) Accounting for unconstrained directions (null space of Aineq) by removing these directions from the
problem (no effect on the number of constraints due to previous steps).

(c) Remove inequality constraints that are inactive always or weakly active always.

4. Whitening 2. The coordinate system is rotated (not scaled) so that the constraint matrix A contains a maximum
number of rows that have only one non-zero element. Following this, rows and columns of A are permuted so
that A becomes block-diagonal with a diagonal matrix block of maximal size.

Note that the first step may not be feasible always, thus restricting the set of models covered in this report. The other
steps can be executed for any general-form convex QP. In what follows, we assume that the QP has been transformed
into the QP1 form.
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3.2 Computational methods
Three methods can be considered for computation, depending on the form taken by A. These are described next from
low to high computational complexity, corresponding to increasing generality. All methods are based on the same
general approach. One assumes a null model, also called null hypothesis, which assumes a distribution for random
instances of δ̃. In this work, these vectors are drawn from a standardized multivariate normal distribution (zero mean,
identity covariance matrix), as is typical [Silvapulle and Sen, 2011, Kuiper et al., 2012]. The expected active number
of constraints for an alternative model (or alternative hypothesis), specified with A, is then computed with data
simulated according the null model. A small yet meaningful extension obtained through this work is that the number
of constraints (K) is allowed to exceed the number of dimensions (N), unlike models considered in earlier works
[Silvapulle and Sen, 2011, Kuiper et al., 2012].

3.2.1 Implementation

All methods are implemented with Python (3.7), except for the software by Kuiper and Hoijtink [2013], which is
available as a stand-alone executable file programmed in Fortran 90. The latest version of the Python software is
released as open software (Apache License 2.0) and is currently available at https://code.ornl.gov/2kv/goric.

3.2.2 Case I: Diagonal case

A extremely efficient method is available if the matrix A is square and the number of non-zero elements and every
row and column is equal to 1. In this case, A has been made diagonal in the last transformation step discussed above
(A = A · I). In case I, the probability of one constraint being active is completely independent of the probability of
another constraint being active. As a result, the number of active constraints follow a binomial distribution, B(n, p),
with the number of trials equal to the number of dimensions (n = N) and equal probability for any constraint being
active or inactive (p = 1/2). Consequently, the expected DOF is equal to mean of the binomial distribution: C̄ = N/2.

3.2.2.1 Illustration. This method applies to example discussed in Section 2.5 above where N = 49. Figure Fig. 18
shows the binomial distribution reflecting the expected distribution of the number of active constraints k with the
associated mean C̄ indicated with a vertical line. In this case, it follows that C̄ = N/2 = 24.5. This is true for every
segmentation considered in Section 2.5, i.e. the results is independent of the signs of the values on the diagonal of A.

3.2.3 Case II: Low-dimensional setup (N ≤ 3)

An analytic solution is available in non-diagonal cases for low dimensions (N ≤ 3). These are discussed next.

3.2.3.1 Case II – 1D (N = 1). In this case, there is at most one inequality represented by A. Since A is
1 × 1-dimensional, it is covered under Case I above. For randomly generated instances of δ̃, drawn from an standard
univariate normal distribution (zero mean, unit variance), it is fairly trivial to see that the expected number of active
constraints is again C̄ = N/2 = 1/2.

3.2.3.2 Case II – 2D (N = 2). In this case, A is a square 2 × 2-dimensional matrix. Note that cases with N = 2
and one constraint only can be reduced to the case N = 1 (see paragraph on dimension reduction above). The matrix
represents a two-dimensional cone, given as column vectors of a square 2 × 2-dimensional matrix Q. When a
randomly sampled instance of δ̃ falls into this cone, there are zero active constraints (k = 0). When the sample is
outside of the cone, the sample can land in one of three regions. One region is defined by the polar cone, given as
column vectors of a square 2 × 2-dimensional matrix P. Note also that P = A.T . If the sample is in this region, the
number of active constraints equals 2 (k = 2). There are two remaining regions, each defined by taking one column of
Q and P. If the sample lands in one of these regions, only one of the constraints is active (k = 1).

The relative size of each region can be measured as their interior angle. This corresponds to the expected number of
samples landing in each region, assuming the same distribution as before (multivariate normal, zero mean, unit
variance). The two regions where k = 1 each have an angle of π/4 radians.
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Figure 18. Case I: Binomial distribution of the active constraints given randomly generated vectors δ̃ and a
diagonal matrix A.

As the number of regions is small (R = 2N = 4) and computing their interior angle (γr) is trivial, one can compute the
expected number of active constraints analytically:

C̄ =
1

2 π

R∑
r=1

γr ·Cr =
1

2 π

N=2∑
k=0

θk ·

(
N
k

)
(33)

with Cr the number of active constraints for the rth region. The expression can also be reformulated with three angles
θk, instead of four, each associated with a feasible number of active constraints k (k = 0, ...,K). These angles are
multiplied with the corresponding binomial coefficient (i.e., N choose k), as in the equation above.

3.2.3.3 Illustration. The 2D case is illustrated with an instance of QP1 where A takes the following form:

A =

[
+1 0
−1 +1

]
(34)

In Figure Fig. 19, one can see the generating vectors of the four polyhedral regions (all blue for feasible region, all
red for region where all constraints active). The feasible set, where k = 0, is a cone with an interior angle of π/8.
Given that the regions where k = 1 each have an angle π/2, the remaining polar cone has angle 3π/8. Consequently,
the expected number of active constraints equals C̄ = 5/8 · N = 5/4 = 1.25.
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Figure 19. Case II – 2D example (N = 2, K = 2): Scatter plot showing the generating vectors of the polyhedral
regions (Q: blue arrows, P: red arrows). A number of randomly sampled vectors δ̃ are shown for illustration
with colours indicating the number of active constraints (k).
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3.2.3.4 Case II – 3D (N = 3). Cases with K < 3 constraints can be transformed to one of the above cases (N = 1
or N = 2). In all remaining cases, A is an K × 3-dimensional matrix with K ≥ N representing a three-dimensional
cone. This cone has K generating vectors, given as column vectors of Q. As in the previous case (N = 2), this cone
represents the region where zero constraints are active. One can compute the polar cone also, which is also defined
with K generating vectors, the columns of P, and defines the region where N = 3 constraints are active. Note also
that P = A.T . Additional regions are defined by taking N = 3 column vectors from P and Q, selecting one vector
from Q and two from P. The columns in Q and P are ordered such that each of the K regions is produced by
selecting the same N = 3 column positions in Q and P first, following by selecting either the column vector Q or P
for a given column position, never selecting vectors in the same column position. A sample falling into one of these
additional regions will result in one active constraint. Similarly, one can define K more regions by taking one
generating vector from P and two from Q. A sample falling in one of these K regions will produce two active
constraints. For each of the 2 K + 2 regions, the expected fraction of randomly generated samples (if drawn from a
standardized multivariate normal distribution) is proportional to the relative size as measured by its solid angle.
Fortunately, the solid angle can be computed analytically in this case, so that one can write:

C̄ =

R∑
r=1

Ωr ·Cr (35)

with Ωr and Cr the solid angle and number of active constraints in each region. Each polyhedral region can exhibit a
unique value for the solid angle so that a sum over the R = 2K + 2 regions is necessary in general.

3.2.3.5 Illustration. The 3D case is illustrated with an instance of QP1 where A takes the following
5 × 3-dimensional form:

A =


−1 0 0
0 −1 0
0 0 −1

+1 −1 0
0 −1 +1

 (36)

Note that the second row in A corresponds to a redundant constraint, which is always inactive or weakly active. This
constraint can be removed to produce a K × N = 4 × 3-dimensional matrix.
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Figure 20. Case II – 3D example (N = 3, K = 4): Scatter plot showing the generating vectors of the polyhedral
regions (Q: blue lines, P: red lines). A number of randomly sampled vectors δ̃ on the sphere are used to
illustrate the locations of the polyhedral regions with colors indicating the number of active constraints (k).
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3.2.4 Case III: General Setup

When none of the above cases apply, one needs to resort to approximation methods. Two methods are known.

3.2.4.1 Taylor series. As in the cases above, it is feasible to define R non-overlapping polyhedral cones in the
N-dimensional case, each with their own number of active constraints Cr. The challenge then is to compute the solid
angles of each of these regions. A Taylor series expansion is available for this purpose [Aomoto, 1977, Ribando,
2006, Beck et al., 2009]. This approach has not been tested in the frame of this study. The number of polyhedral
regions equals R = 2N when N = K and thus increases exponentially in the worst-case scenario. For this reason, it is
hypothesized that increasing N reduces the convergence rate of the series rather fast.

3.2.4.2 Monte Carlo. An alternative method that is easier at a conceptual level is to generate M random samples
δ̃ j and solve QP1. For each sample, j ( j = 1, . . . ,M), count the number of constraints that are active (C j). Then, after
solving QP1 for a sufficiently large number of samples, one can estimate the expected number of active constraints as:

C̄ =
1
M
·

M∑
j=1

C j (37)

Evaluating the number of active constraints (C j) constitutes a practical numerical challenge. When using a typical
solver, the number of active constraints can be identified by counting the Lagrange multipliers that are (strictly)
positive. Lagrange multipliers are negative or equal to zero represent inactive constraints. Because computers do not
exhibit absolute precision, it is generally difficult to determine whether a Lagrange multiplier is exactly equal to zero
or not. As a result, determining the active constraints requires the use of a non-zero tolerance (e.g., ε = 10−6) and
leads to an imprecise evaluation of the number of active constraints. Alternative approaches are desirable as (a) it is
not obvious how to set the value of this tolerance and (b) the optimal tolerance value likely depends on the specific
instance of QP1 under study.

3.2.4.3 Monte Carlo – QP. One possible solution consits of using the Goldfarb/Idnani dual quadratic
programming algorithm [Goldfarb and Idnani, 1983]. This algorithm identifies the active constraints during
execution and thus permits counting the active constraints upon convergence to the final solution. This approach is
used as the basis for a stand-alone program to compute the GORIC. It is based on an efficient implementation in
Fortran90. Although the GORIC is said to be restricted to cases where K ≤ N, the implementation of [e.g., Kuiper
et al., 2012] appears to deliver accurate results even when K > N (not shown). The stand-alone nature of this
software makes integration in other software platform somewhat challenging. For this reason, the same approach is
implemented here based on the quadprog package for Python [McGibbon and Turlach, 2019], which, in turn makes
use of efficient Cython code [Behnel et al., 2011].

3.2.4.4 Monte Carlo – LP. To avoid potential numerical issues with conventional QP solvers, the QP1 problem
can be converted into an equivalent linear complementarity problem (LCP). Concretely, the following LCP is solved
for α and ζ for the given δ̃ j:

Q · α + P · ζ − δ̃ j = 0 (38)
α ≥ 0 (39)
ζ ≥ 0 (40)

αT · ζ = 0 (41)

where the column vectors of Q are the generating vectors for the polyhedral cone describing the feasible set of QP1
and P are the generating vectors for the polar of the feasible set. As before, the columns of Q and P are ordered such
that each region is a polyhedral cone defined by N generating vectors, picking one column from either Q or P for
each column position. The number of active constraints for problem QP1 and a given sample δ̃ j is then given as the
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number of coefficients in ζ that are non-zero. As with the Lagrange multipliers, this leads to issues due to limited
numerical precision. To avoid this, a relative comparison of the magnitude of the coefficients in α and ζ can be used
instead:

C j =
∑

i

H
(
ζi, j − αi, j

)
(42)

with H (·) the Heaviside function. The last constraint (bilinear complementarity) in the above LCP can be removed by
solving the following linear program (LP) instead:

α̂ j, ζ̂ j := arg min
α,ζ

J =

N∑
i

ζi (43)

Q · α + P · ζ − δ̃ j = 0 (44)
α ≥ 0 (45)
β ≥ 0 (46)

This alternative formulation is expected to work due to the following properties of the problem. The polyhedral
regions of the input space within which the number of active constraints is constant (a) are convex, (b) are pointed
cones with their point at the origin, (c) cover the whole N-dimensional space, and (d) are non-overlapping.

3.2.4.5 Monte Carlo - mpLP. Another solution consists of multi-parametric linear programming [mpLP,
Pistikopoulos et al., 2007] and is specifically aimed at reducing computational costs associated with solving many
instances of the same problem. The idea is to provide a function that maps any N-dimensional vector δ̃ j (now called
parameters) to the corresponding estimates δ̂ j (solution). For quadratic problems, like instances of QP1, this function
is piece-wise linear. The same holds for the LP form discussed above, leading to multi-parametric linear
programming, which is used here. In the present case (polyhedral cone as feasible space), this function consists of R
linear functions, each valid for a region of the input space defined by a set of inequality constraints for the input
vector (δ̃). In addition, the number of active constraints is constant in each region. Consequently, the number of
active constraints can be obtained by means of a lookup table. First, find the region that contains the new sample and
then report the number of active constraints for that region. This is computationally efficient. Effects of imperfect
numerical precision can be minimized by selecting the region for which the distance from the point to the interior of
the region is minimal. Unfortunately, the number of regions R scales exponentially with the number of dimensions
(N). This means the memory requirements for the lookup table quickly exceed the capacity of typical hardware.

3.2.4.6 Illustration and comparison. The top panel of Fig. 21 shows the obtained values for D̄ (= N − C̄) and the
computational requirements for isotonic regression as a function of the number of dimensions (N). The largest value
for N (N = 49) corresponds to one of the models considered in Section 2.2. The number of samples equals
M = 4096. All methods are in close agreement with each other and indicate that applying isotonicity constraints to
reduce the degrees of freedom is a very effective method. Indeed, the marginal increase of the degrees of freedom (D̄)
becomes smaller as N increases. The bottom panel of Fig. 21 shows the time used for computation. For low values of
N, the mpLP solution is on par with the analytic solution. However, its efficiency is dominated by all methods that
solve each instance of QP1 separately for N = 16 and higher. The QP-based methods [Kuiper and Hoijtink, 2013,
McGibbon and Turlach, 2019] are more efficient than the LP method. It is assumed that this is at least in part
attributed to the efficient implementation of the dual QP algorithm.

Fig. 22 offers another look into the performance of the studied methods. The top panel shows the estimated value for
D̄ as a function of the number of Monte Carlo samples for one of the isotonic spline functions given above,
specifically for N = 11. Note that the random samples are the same for all methods, except for the implementation by
Kuiper and Hoijtink [2013]. One can see in the top panel that all methods converge fairly rapidly to the same
estimate. A number of N = 214 = 16384 samples appears sufficient for all computed values for D̄ to be less than 0.01
apart. The bottom panel shows the time needed for computation as a function of the number of Monte Carlo samples.
As one might expect, all methods exhibit increasing computational costs with increasing sample sizes. However, for
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the mpLP method and for the QP-based method implemented by Kuiper and Hoijtink [2013], this is only apparent for
N > 1000. The QP method by McGibbon and Turlach [2019] appears particularly efficient if the number of samples
is small (N ≤ 1000). For larger samples (M ≥ 10000), the QP method as implemented by Kuiper and Hoijtink [2013]
appears the most efficient. It is suspected that this is because McGibbon and Turlach [2019] only allows to execute a
single instance of QP1, thus requiring M restarts of this routine initiated in Python, with random sampling and
averaging executed in pure Python. In contrast, the code by Kuiper and Hoijtink [2013] executes the random
sampling, all calls to the dual QP algorithm, and averaging within the same program implemented in Fortran90.
Although a benefit is thus observed for the implementation by Kuiper and Hoijtink [2013] for large sample sizes,
results discussed in Section 2.2 and Section 2.3 are obtained with the implementation of McGibbon and Turlach
[2019], mainly to enable straightforward extension and reuse of the produced software.
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Figure 21. Expected degrees of freedom for isotonic spline function fit as a function of N (with M = 4096)
for 5 methods: (a) linear programming (LP), (b) multi-parametric linear programming (mpLP, N ≤ 20),
(c) quadratic programming with stand-alone executable (QP Kuiper), (d) quadratic programming based on
Cython code (QP McGibbon), and (e) analytic solution (N ≤ 4).

3.2.5 Case IV: Mixed methods

Special cases arise when A is a block-diagonal matrix. Each of these blocks can be treated independently in this case
due to orthogonality of the constraints. Each of these blocks belongs to one of the above three cases and can thus be
treated accordingly. This is expected to provide computational benefits as well as improved accuracy. After doing so,
one simply needs to sum the expected number of active constraints for each block. This approach has not been tested
yet because this kind of situation is considered rare.
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Figure 22. Expected degrees of freedom for isotonic spline function fit as a function of M (with N = 11)
for 5 methods: (a) linear programming (LP), (b) multi-parametric linear programming (mpLP, N ≤ 20),
(c) quadratic programming with stand-alone executable (QP Kuiper), (d) quadratic programming based on
Cython code (QP McGibbon), and (e) analytic solution (N ≤ 4).
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4. Conclusions and Perspectives

This report provides details on practical approaches to compute the generalized order restricted information criterion
(GORIC) for inequality-constrained model selection, particularly to select the statistically optimal model among a set
of shape-constrained spline functions. The GORIC trades model complexity, measured as the expected degrees of
freedom, against the fit of the model, measured as the likelihood of the data conditioned to the fitted model
parameters. In the context of the GORIC, the expected degrees of freedom is defined as the number of parameters in
the model minus the expected number of active constraints for random instances of the data. Computing the expected
number of active constraints constitutes a practical challenge to the application of GORIC. For this reason, the
available methods to compute it have been listed and a selection of these has been studied in detail.

4.1 Conclusions
The results shown in this report support the following conclusions, which are not new:

• The expected degrees of freedom can be computed analytically in some restrictive cases: (a) low dimensional
cases (K ≤ 3) and (b) cases with an isotropic objective function and orthogonal constraints. Methods to do so
have been enumerated exhaustively in this report.

• In the general case, computing the GORIC requires a numeric approximation. One method is based on a Taylor
series and has not been tested. Another method is based on Monte Carlo integration. Several implementations
of this method have been tested.

Some new conclusions are:

• Although the GORIC has been developed with a restriction on the number of constraints (K ≤ N), results
discussed in this report suggest that this restriction is not strictly necessary. It is speculated that this is true
whenever the feasible set is a full-dimensional polyhedral set (i.e., a non-empty N-dimensional object). All
cases studied in this report satisfy this property. When so, the number of active constraints among the K linear
inequality constraints can never exceed the number of dimensions (N). All cases studied in this report satisfy
this property.

• Multi-parametric programming is an effective way to reduce the computational effort. However, its benefits are
only apparent if a sufficient number of samples is reached. With increasing dimension, the number of samples
that need to be requested to see the benefit of the multi-parametric paradigm increases dramatically, probably
exponentially. It is however suspected that the distribution of the number of active constraints becomes
narrower with increasing dimension, in turn meaning that the number of samples required to obtain an accurate
value of the GORIC decreases with increasing dimension.

• The dual quadratic program algorithm, when implemented such that the active constraints are reported, scales
well with the size of the studied problems. The same holds for the linear programming approach.

• The implementations of the dual quadratic program algorithm, both making use of efficient code, prove very
effective as a way to compute the GORIC in a rapid manner for all cases studied in this report.

4.2 Perspective
This report is focused on the use of GORIC for data series segmentation based on shape-constrained spline functions.
Throughout this report, it is assumed that a shape is given, e.g. increasing-decreasing, and that only the
change-points, e.g., the location of maxima and minima, need to be determined. The original motivation is however
to determine the shape itself also. The idea is to select an optimal shape among many options (e.g., increasing,
decreasing, increasing-decreasing, decreasing-increasing, increasing-decreasing-increasing, ...). This problem is
more complex given that this requires to identify the number of segments, in addition to identifying their location.

Initial work in this direction made use of subjective model selection criteria [Villez et al., 2013, Thürlimann et al.,
2019]. While successful, this requires elaborate tuning of subjective beliefs for each application. A more objective
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model selection criterion could avoid the need for such tuning procedures. A provably optimal model selection
criterion has not been established for this kind of problem. This report is expected to serve as inspiration to establish
such a criterion as well as to implement it as an efficient piece of software.
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